Sieved Partition Functions and Q-binomial Coefficients

نویسندگان

  • Frank Garvan
  • Dennis Stanton
  • FRANK GARVAN
  • DENNIS STANTON
چکیده

Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved q-binomial coefficient is the sum of those terms whose exponents are congruent to r modulo t. In this paper explicit polynomial identities in q are given for sieved q-binomial coefficients. As a limiting case, generating functions for the sieved partition function are found as multidimensional theta functions. A striking corollary of this representation is the proof of Ramanujan’s congruences mod 5, 7, and 11 by exhibiting symmetry groups of orders 5, 7, and 11 of explicit quadratic forms. We also verify the Subbarao conjecture for t = 3, t = 5, and t = 10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIEVED PARTITION FUNCTIONS AND a-BINOMIAL COEFFICIENTS

The ^-binomial coefficient is a polynomial in q . Given an integer t and a residue class r modulo ;, a sieved ^-binomial coefficient is the sum of those terms whose exponents are congruent to r modulo /. In this paper explicit polynomial identities in q are given for sieved ij-binomial coefficients. As a limiting case, generating functions for the sieved partition function are found as multidim...

متن کامل

Enumeration and Special Functions

1.1 q -binomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 1.2 Unimodality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 1.3 Congruences for the partition function . . . . . . . . . . . . . . . . . . . . . . . . . 143 1.4 The Jacobi triple product identity . . . . . . . . . . . . . . . . . ...

متن کامل

AN OVERPARTITION ANALOGUE OF THE q-BINOMIAL COEFFICIENTS

We define an overpartition analogue of Gaussian polynomials (also known as q-binomial coefficients) as a generating function for the number of overpartitions fitting inside the M ×N rectangle. We call these new polynomials over Gaussian polynomials or over q-binomial coefficients. We investigate basic properties and applications of over q-binomial coefficients. In particular, via the recurrence...

متن کامل

Unimodality via Kronecker Products

We present new proofs and generalizations of unimodality of the q-binomial coefficients ( n k ) q as polynomials in q. We use an algebraic approach by interpreting the differences between numbers of certain partitions as Kronecker coefficients of representations of Sn. Other applications of this approach include strict unimodality of the diagonal q-binomial coefficients and unimodality of certa...

متن کامل

Order Ideals in Weak Subposets of Young’s Lattice and Associated Unimodality Conjectures

The k-Young lattice Y k is a weak subposet of the Young lattice containing partitions whose first part is bounded by an integer k > 0. The Y k poset was introduced in connection with generalized Schur functions and later shown to be isomorphic to the weak order on the quotient of the affine symmetric group S̃k+1 by a maximal parabolic subgroup. We prove a number of properties for Y k including t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014